4.7 Review

Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 86, 期 -, 页码 37-46

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2015.04.006

关键词

PGC-1 alpha; Vitamins; Skeletal muscle; Redox signaling

资金

  1. Spanish Ministry of Education and Science (MEC) [SAF2013-44663-R]
  2. Red Tematica de investigacion cooperativa en envejecimiento y fragilidad (RETICEF) [ISCIII2012-RED-43-029]
  3. Conselleria d'Educacio, Cultura i Esport de la Generalitat Valenciana [PROMETEO2014/056]
  4. INCLIVA [RS2012-609]
  5. EU [CM1001, FRAILOMIC-HEALTH.2012.2.1.1-2]
  6. European Union

向作者/读者索取更多资源

Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely clue to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect. In fact, we proposed that exercise itself can be considered as an antioxidant because training increases the expression of classical antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and, in general, lowering the endogenous antioxidant enzymes by administration of antioxidant supplements may not be a good strategy when training. Antioxidant enzymes are not the only ones to be activated by training. Mitochondriogenesis is an important process activated in exercise. Many reclox-sensitive enzymes are involved in this process. Important signaling molecules like MAP kinases, NP-kappa B, PGC-1 alpha, p53, heat shock factor, and others modulate muscle adaptation to exercise. Interventions aimed at modifying the production of ROS in exercise must be performed with care as they may be detrimental in that they may lower useful adaptations to exercise. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据