4.7 Article

Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1 release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 88, 期 -, 页码 404-416

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2015.05.004

关键词

Resveratrol; Ventilator-induced lung injury; HMGB1; Mitochondrial oxidative damage; Lung endothelial barrier; Nrf2; Free radicals

资金

  1. National Natural Science Foundation of China [81272144, 31371164, 31171120, 31271270, 81372100]
  2. New Outstanding Young Scholar Program of the Shanghai Health Bureau [XYQ2011045]
  3. Shanghai Municipal Commission of Health and Family Planning [20114217]
  4. Science and Technology Commission of the Shanghai Municipality [12ZR1419800]

向作者/读者索取更多资源

High-mobility group box 1 (HMGB1) contributes to lung vascular hyperpermeability during ventilator-induced lung injury. We aimed to determine whether the natural antioxidant resveratrol protected against HMGB1-induced endothelial hyperpermeability both in vitro and in vivo. We found that HMGB1 decreased vascular endothelial (VE)-cadherin expression and increased endothelial permeability, leading to mitochondrial oxidative damage in primary cultured mouse lung vascular endothelial cells (MLVECs). Both the mitochondrial superoxide dismutase 2 mimetic MnTBAP and resveratrol blocked HMGB1-induced mitochondrial oxidative damage, VE-cadherin downregulation, and endothelial hyperpermeability. In in vivo studies, anesthetized male ICR mice were ventilated for 4 h using low tidal volume (6 ml/kg) or high tidal volume (HVT: 30 ml/kg) ventilation. The mice were injected intraperitoneally with resveratrol immediately before the onset of ventilation. We found that resveratrol attenuated HVT-associated lung vascular hyperpermeability and HMGB1 production. HVT caused a significant increase in nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and Nrf2 target gene expression in lung tissues, which was further enhanced by resveratrol treatment HMGB1 had no effect on Nrf2 activation, whereas resveratrol treatment activated the Nrf2 signaling pathway in HMGB1-treated MLVECs. Moreover, Nrf2 knockdown reversed the inhibitory effects of resveratrol on HMGB1-induced mitochondrial oxidative damage and endothelial hyperpermeability. The inhibitory effect of resveratrol on cyclic stretch-induced HMGB1 mRNA expression in primary cultured MLVECs was also abolished by Nrf2 knockdown In summary, this study demonstrates that resveratrol protects against lung endothelial barrier dysfunction initiated by HVT. Lung endothelial barrier protection by resveratrol involves inhibition of mechanical stretch-induced HMGB1 release and HMGB1-induced mitochondrial oxidative damage. These protective effects of resveratrol might be mediated through an Nrf2-dependent mechanism. (C) 2015 Elsevier Inc. All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据