4.6 Article

Litter chemistry influences decomposition through activity of specific microbial functional guilds

期刊

ECOLOGICAL MONOGRAPHS
卷 88, 期 3, 页码 429-444

出版社

WILEY
DOI: 10.1002/ecm.1303

关键词

Arabidopsis thaliana; decomposition; functional guild; litter; microbial functional guild; niche differentiation

类别

资金

  1. National Science Foundation [1045658, 1457695]
  2. NOAA C&GC Postdoctoral Research Fellowship program
  3. Peter Paul Professorship fund at Boston University
  4. Terman Fellowship at Stanford University
  5. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  6. Direct For Biological Sciences
  7. Division Of Environmental Biology [1045658, 1457695] Funding Source: National Science Foundation

向作者/读者索取更多资源

Niche differentiation among species is a key mechanism by which biodiversity may be linked to ecosystem function. We tested a set of widely invoked hypotheses about the extent of niche differentiation in one of the most diverse communities on Earth, decomposer microorganisms, by measuring their response to changes in three abundant litter resources: lignin, cellulose, and nitrogen (N). To do this, we used the model system Arabidopsis thaliana to manipulate lignin, cellulose, and N availability and then used high-throughput sequencing to measure the response of microbial communities during decay. Resequencing the decomposer communities after incubation of decomposed litter with pure substrates showed that groups of species had unique substrate use profiles, such that species organized into functional guilds of decomposers that were associated with individual litter chemicals. Low concentrations of lignin, cellulose, or N in the litter caused unique shifts in decomposer community composition after 1 yr of decay. Low cellulose plants had low levels of fungi in all decomposer guilds, low lignin plants had high levels of fungi in all decomposer guilds, and low N plants had low levels of fungi in decomposer guilds associated with sucrose and lignin. The relative abundance of decomposer guilds correlated with the total loss of individual litter chemicals during litter decay in the field. In addition, N fertilization shifted decomposer communities during both the early and later stages of decay to those dominated by decomposers in the cellulose guild. Our results contrast the assumption that major carbon (C) and N degradation mechanisms are uniform across whole decomposer communities and instead suggest that decomposition arises from complementarity among groups of metabolically distinct taxa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据