4.7 Article

Projections of future land use changes: Multiple scenarios -based impacts analysis on ecosystem services for Wuhan city, China

期刊

ECOLOGICAL INDICATORS
卷 94, 期 -, 页码 430-445

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ecolind.2018.06.047

关键词

Structural optimization; Spatial allocation; Ecosystem services trade-offs; Multi-Objective Programming (MOP); Dyna-CLUE model; Multiple scenario analysis

资金

  1. National Natural Science Foundation of China [41501183]
  2. China Scholarship Council
  3. Fundamental Research Funds for the Central Universities, China Unversity of Geosciences (Wuhan)

向作者/读者索取更多资源

Urbanization alters the supply of ecosystem services that are vital for human well-being. The loss of ecosystem services is particularly challenging in rapid urbanization areas where economic development needs to consume substantial natural resources. The quantitative and spatial optimization of land use provides an effective tool for rationally allocating land use structure and pattern to ensure the provision of expected ecosystem services. In this paper, we combine the Multi-Objective Programming and the Dyna-CLUE model to project land use changes in 2030 for Wuhan city under three scenarios, i.e., Business As Usual (BAU), Rapid Economic Development (RED), and Ecological Land Protection (ELP). The coupled model that integrates top-down and bottom-up processes is capable of obtaining the optimized land use patterns under different scenarios and examining the potential impacts of land use changes on ecosystem services in a spatially explicit way. We find that built-up land will continue its remarkable growth during 2015-2030 under the BAU scenario (grows by 96%) at the expense of ecological lands (decreases by 18%). Meanwhile, the predicted losses of ecological lands are 11% and 6% under the RED and ELP scenarios, respectively. Projected land use changes result in varying magnitudes of declines in ecosystem service values for BAU (11%), RED (6%) and ELP (2%) scenarios from 2015 to 2030. The ELP scenario, which incorporates ecological protection policies and spatial restrictions, plays a positive role in altering land use trends and mitigating ecosystem degradation. Finally, we establish an ecosystem service value change matrix to explain how interactions between land use types give rise to trade-offs among multiple ecosystem services. We find that conversions between ecological land use types can trigger trade-offs among ecosystem services, but the conversion from ecological lands towards urban land leads to a net loss of all individual ecosystem services. By linking land and ecological systems, the coupled modeling framework in this study can be useful for obtaining optimal ecosystem-based land use allocation strategies and provide scientific support for sustainable land use management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据