4.7 Article

Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 485, 期 -, 页码 130-139

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2017.12.042

关键词

volatile depletion; post-nebular volatilization; bulk Earth composition; core formation; laser-heated diamond anvil cell

资金

  1. French National Research Agency (ANR project VolTerre) [ANR-14-CE33-0017-01]
  2. UnivEarthS Labex program at Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]
  3. IPGP analytical platform PARI
  4. Paris-IdF region SESAME Grant [12015908]
  5. European Research Council under the European Community's Seventh Framework Programme (FP7)/ERC grant [207467]
  6. European Research Council under the H framework program/ERC grant [637503]
  7. ANR through a chaire d'excellence Sorbonne Paris Cite

向作者/读者索取更多资源

The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H-2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post nebular volatilization. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据