4.7 Article

Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 15, 期 15, 页码 9049-9062

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-15-9049-2015

关键词

-

资金

  1. National Natural Science Foundation of China [41025012/41121063]
  2. Chinese Academy of Sciences [XDB05010200]
  3. NSFC-Guangdong Joint Funds [U0833003]
  4. Guangzhou Institute of Geochemistry (GIGCAS) [135, Y234161001]

向作者/读者索取更多资源

In China, a rapid increase in passenger vehicles has led to the growing concern of vehicle exhaust as an important source of anthropogenic secondary organic aerosol (SOA) in megacities hard hit by haze. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated in China was investigated in a 30 m(3) smog chamber. Five photo-oxidation experiments were carried out at 25 degrees C with relative humidity at around 50 %. After aging at an OH exposure of 5 x 10(6) molecules cm 3 h, the formed SOA was 12-259 times as high as primary organic aerosol (POA). The SOA production factors (PF) were 0.001-0.044 g kg(-1) fuel, comparable with those from the previous studies at comparable OH exposure. This quite lower OH exposure than that in typical atmospheric conditions might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yields in this study were well fit by a one-product gas-particle partitioning model but quite lower than those of a previous study investigating SOA formation from three idling passenger vehicles (Euro 2-4). Traditional single-ring aromatic precursors and naphthalene could explain 51-90% of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f(43) (ratio of m/z 43, mostly C2H3O+, to the total signal in mass spectrum) and f(44) (mostly CO2+) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of Delta H : C / Delta O : C ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据