4.5 Article

Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity

期刊

DISEASE MODELS & MECHANISMS
卷 11, 期 2, 页码 -

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dmm.032086

关键词

Galectin-3; Insulin resistance; Lipotoxicity; Mitochondria; Obesity; Oxidative stress

资金

  1. Instituto de Salud Carlos III - European Regional Development Fund (Fondo Europeo de Desarrollo Regional) [PI15/01060]
  2. Ministerio de Economia y Competitividad [SAF2012-34460, SAF2016-81063]
  3. FPI Program del Gobierno de Castilla y Leon (FSE)
  4. Miguel Servet grant from the Instituto de Salud Carlos III European Regional Development Fund (Fondo Europeo de Desarrollo Regional), a way to build Europe, Fondo de Investigaciones Sanitarias [CP13/00221, PI15/02160]

向作者/读者索取更多资源

Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in F-18-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, beta-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC) levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据