4.6 Article

Synergistic lithium storage of a multi-component Co2SnO4/Co3O4/Al2O3/C composite from a single-source precursor

期刊

RSC ADVANCES
卷 5, 期 86, 页码 69932-69938

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra09607c

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2014CB932102]
  2. National Natural Science Foundation of China
  3. Program for Changjiang Scholars and Innovative Research Team in University [IRT1205]

向作者/读者索取更多资源

Endowing multi-component anode nanomaterials for lithium-ion batteries (LIBs) with integrated features for synergistically enhancing electrochemical performance is challenging via a simple preparation method. We herein describe an easy approach for preparing a multi-component Co2SnO4/Co3O4/Al2O3/C composite as the anode nanomaterial for LIBs, derived froma laurate anion-intercalated CoAlSn-layered double hydroxide (CoAlSn-LDH) single-source precursor. The resultant Co2SnO4/Co3O4/Al2O3/C electrode delivers a highly enhanced reversible capacity of 1170 mA h g(-1) at 100 mA g(-1) after 100 cycles, compared with the bi-active composites designed without Al2O3 or carbon (Co2SnO4/Co3O4/C, Co2SnO4/Co3O4/Al2O3, and Co2SnO4/Co3O4) which are easily derived through the same protocol by choosing LDH precursors without Al cation or surfactant intercalation. The distinctly different cycling stability and rate capability of Co2SnO4/Co3O4/Al2O3/C among the different composite electrodes suggest that the high enhancement could result from the following synergistic features: the combined conversion and alloying reactions of bi-active Co2SnO4/Co3O4 during cycling, the buffering role of non-active Al2O3 and carbon, and the improved conductivity of the self-generated carbon matrix. The LDH precursor-based approach may be extended to the design and preparation of various multi-component transition metal oxide composite nanomaterials for synergistic lithium storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据