4.6 Article

Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming

期刊

CRYOSPHERE
卷 9, 期 3, 页码 1039-1062

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/tc-9-1039-2015

关键词

-

资金

  1. ice2sea programme from the European Union's 7th Framework Programme [226375]
  2. Belgian Federal Science Policy Office [SD/CS/06A]

向作者/读者索取更多资源

Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade (2000-2010), both increased melt-water runoff and enhanced ice discharge from calving glaciers have contributed 0.6 +/- 0.1 mm yr(-1) to global sea-level rise, with a relative contribution of 60 and 40% respectively. Here we use a higher-order ice flow model, spun up to present day, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of 10 atmosphere and ocean general circulation models and four representative concentration pathway scenarios, the projected sea-level rise between 2000 and 2100 lies in the range of + 1.4 to + 16.6 cm. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to abate for the most favourable scenario where the warming peaks in this century, allowing the ice sheet to maintain a geometry close to the present-day state. For the other moderate scenario, loss rates remain at a constant level over 300 years. In any scenario, volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin, reducing the ice-ocean contact area. As confirmed by other studies, we find that the effect of enhanced basal lubrication on the volume evolution is negligible on centennial timescales. Our projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. Our results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, not from ice dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据