4.7 Article

Synthesis and organic solar cell performance of BODIPY and coumarin functionalized SWCNTs or graphene oxide nanomaterials

期刊

DALTON TRANSACTIONS
卷 47, 期 29, 页码 9617-9626

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8dt01588k

关键词

-

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [115Z734]
  2. Program of basic scientific research [V.44.4.3]

向作者/读者索取更多资源

The synthesis and characterization of new hybrid materials based on reduced graphene oxide (rGO) or single walled carbon nanotubes (SWCNTs) covalently functionalized by 4,4'-difluoro-8-(4-propynyloxy)-phenyl-1,3,5,7-tetramethyl-4-bora-3a, 4a-diaza-s-indacene (BODIPY) (2) or 7-(prop-2-yn-1-yloxy)-3-(3',4',5'-trimethoxyphenyl)-coumarin (4) as light harvesting groups have been described. The organic solar cell performances of these novel nanomaterials in P3HT:PCBM blends were investigated. These covalently bonded hybrid materials (reduced graphene oxide:BODIPY (GB), reduced graphene oxide:Coumarin (GC), SWCNTs:BODIPY (CB) and SWCNTs:Coumarin (CC)) were prepared by an azide-alkyne Huisgen cycloaddition (click) reaction between the azide bearing SWCNTs or rGO and terminal ethynyl functionalized BODIPY (2) or coumarin (4) derivatives. The formation of novel nanomaterials was confirmed by FT-IR, UV-Vis and Raman spectroscopies and thermogravimetric analysis. The best performance on P3HT:PCBM organic solar cells was produced by SWCNTs:Coumarin (CC) hybrids which were coated on an indium tin oxide coated polyethylene terephthalate film (ITO-PET). The reference device based on the P3HT:PCBM blend without CC showed a power conversion efficiency (PCE) of 1.16%, an FF of 35% and a short-circuit current density (J(sc)) of 5.51 mA cm(-2). The reference device with CC hybrids within the P3HT: PCBM blend increased the values significantly to 1.62% for PCE, 40% for FF and 6.8 mA cm(-2) for J(sc).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据