4.7 Article

The reaction mechanism and selectivity of acetylene hydrogenation over Ni-Ga intermetallic compound catalysts: a density functional theory study

期刊

DALTON TRANSACTIONS
卷 47, 期 12, 页码 4198-4208

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7dt04726f

关键词

-

资金

  1. Fundamental Research Funds for the Central Universities [buctylkxj01]
  2. 973 Program [2014CB932101]
  3. National Natural Science Foundation of China (NSFC)

向作者/读者索取更多资源

Intermetallic compounds (IMCs) have shown excellent catalytic performance toward the selective hydrogenation of acetylene, but the theoretical understanding on this reaction over Ni-based IMCs is rather limited. In this work, the adsorptions of the C-2 species, Bader charge, projected density of states (PDOS) and the reaction pathways were calculated by the density functional theory (DFT) method to investigate the mechanism and selectivity for the acetylene hydrogenation on the (111) surface of NinGa (n = 1, 3) IMCs, with a comparative study on the pristine Ni(111) surface. The results indicate that the adsorption energy of acetylene increased along with the Ni/Ga ratio, therefore a feasible acetylene adsorption on the Ga-rich surface guaranteed a low effective barrier, leading to the best activity for the NiGa(111) surface among three surfaces. Bader charge analysis shows that electrons transferred from Ga atoms to Ni atoms and further delivered to C-2 species, decreasing the adsorption capacity of C-2 species on NiGa(111) in comparison with those on Ni(111) and Ni3Ga(111). The reaction pathway of acetylene hydrogenation to ethylene via vinyl or even over-hydrogenation to ethane via ethyl is more favorable than the pathway involving the ethylidene intermediate on all surfaces. Moreover, the ethylene selectivity has a positive correlation with the gallium content by comparing the desorption barrier with the hydrogenation barrier of ethylene, thus the NiGa(111) surface also exhibits the best selectivity. Therefore, the NiGa(111) surface demonstrates to be an excellent reaction facet for the semihydrogenation of acetylene, which agreed with the experimental findings, and would provide helpful instructions for designing and preparing highly-selective and noble-substitute catalysts of alkyne semihydrogenation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据