4.7 Article

An imputed forest composition map for New England screened by species range boundaries

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 347, 期 -, 页码 107-115

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2015.03.016

关键词

Nearest-neighbor imputation; New England; Forest inventory; Tree species distribution

类别

资金

  1. National Science Foundation Harvard Forest Long Term Ecological Research Program [NSF-DEB 12-37491]
  2. Scenarios Society and Solutions Research Coordination Network [NSF-DEB-13-38809]
  3. Direct For Biological Sciences
  4. Division Of Environmental Biology [1338809] Funding Source: National Science Foundation

向作者/读者索取更多资源

Initializing forest landscape models (FLMs) to simulate changes in tree species composition requires accurate fine-scale forest attribute information mapped continuously over large areas. Nearest-neighbor imputation maps, maps developed from multivariate imputation of field plots, have high potential for use as the initial condition within FLMs, but the tendency for field plots to be imputed over large geographical distances can result in species being mapped outside of their home ranges, which is problematic. We developed an approach for evaluating and imputing field plots based on their similarity across multiple spatial environmental variates, their species composition, and their geographical distance between source and imputation to produce a map that is appropriate for initializing an FLM. We used this approach to map 13 million ha of forest throughout the six New England states (Rhode Island, Connecticut, Massachusetts, New Hampshire, Vermont, and Maine). Using both independent state forest and, more extensive, ecoregion validation data sets, we compared the imputation map to field inventory data, based on the dissimilarity of tree community composition and the rank order correlation of tree species abundance. Average Bray-Curtis dissimilarity between the imputation map and field plots was 0.32 and 0.12, for the state forest and ecoregion validation data sets, respectfully. Average Spearman rank order correlation was 0.81 and 0.93 for the state forest and ecoregion validation data sets, respectfully. Our analyses suggest that this approach to imputation can realistically capture regional variation in forest composition. We expect the imputation map will be valuable for several regional forest studies and that the approach could be successfully used in other regions. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据