4.7 Review

Beyond the photocycle - how cryptochromes regulate photoresponses in plants?

期刊

CURRENT OPINION IN PLANT BIOLOGY
卷 45, 期 -, 页码 120-126

出版社

CURRENT BIOLOGY LTD
DOI: 10.1016/j.pbi.2018.05.014

关键词

-

资金

  1. National Institute of Health [GM56265]
  2. National Natural Science Foundation of China [31500991, 31371411]
  3. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R29GM056265, R01GM056265] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Cryptochromes (CRYs) are blue light receptors that mediate light regulation of plant growth and development. Land plants possess various numbers of cryptochromes, CRY1 and CRY2, which serve overlapping and partially redundant functions in different plant species. Cryptochromes exist as physiologically inactive monomers in darkness; photoexcited cryptochromes undergo homodimerization to increase their affinity to the CRY signaling proteins, such as CIBs (CRY2-interacting bHLH), PIFs (Phytochrome-Interacting Factors), AUX/IAA (Auxin/INDOLE-3-ACETIC ACID), and the COP1-SPAs (Constitutive Photomorphogenesis 1-Suppressors of Phytochrome A) complexes. These light-dependent protein-protein interactions alter the activity of the CRY-signaling proteins to change gene expression and developmental programs in response to light. In the meantime, photoexcitation also changes the affinity of cryptochromes to the CRY-regulatory proteins, such as BICs (Blue-light Inhibitors of CRYs) and PPKs (Photoregulatory Protein Kinases), to modulate the activity, modification, or abundance of cryptochromes and photosensitivity of plants in response to the changing light environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据