4.2 Review

Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss

期刊

CURRENT NEUROVASCULAR RESEARCH
卷 14, 期 4, 页码 415-420

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1567202614666171116102911

关键词

Aging; aging-related disorders; Alzheimer's disease; apoptosis; autophagy; cell longevity; deoxyribonucleic acid; diabetes mellitus; erythropoietin; forkhead transcription factors; FoxO; growth factors; erythropoietin; Huntington's disease; metabolism; mitochondria; oxidative stress; programmed cell death; silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1); sirtuin; wingless; Wnt1 inducible signaling pathway protein 1 (WISP1); Wnt signaling

资金

  1. American Diabetes Association
  2. American Heart Association
  3. NIH NIEHS
  4. NIH NIA
  5. NIH NINDS
  6. NIH ARRA

向作者/读者索取更多资源

Background: With almost 47 million individuals worldwide suffering from some aspect of dementia, it is clear that cognitive loss impacts a significant proportion of the global population. Unfortunately, definitive treatments to resolve or prevent the onset of cognitive loss are limited. In most cases such care is currently non-existent prompting the need for novel treatment strategies. Methods: Mammalian forkhead transcription factors of the O class (FoxO) are one such avenue of investigation that offer an exciting potential to bring new treatments forward for disorders that involve cognitive loss. Here we examine the background, structure, expression, and function of FoxO transcription factors and their role in cognitive loss, programmed cell death in the nervous system with apoptosis and autophagy, and areas to target FoxOs for dementia and specific disorders such as Alzheimer's disease. Results: FoxO proteins work in concert with a number of other cell survival pathways that involve growth factors, such as erythropoietin and neurotrophins, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), Wnt signaling, and cancer-related pathways. FoxO transcription factors oversee pro-inflammatory pathways, affect nervous system amyloid (A beta) production and toxicity, lead to mitochondrial dysfunction, foster neuronal apoptotic cell death, and accelerate the progression of degenerative disease. However, under some scenarios such as those involving autophagy, FoxOs also can offer protection in the nervous system and reduce toxic intracellular protein accumulations and potentially limit A beta toxicity. Conclusion: Given the ability of FoxOs to not only promote apoptotic cell death in the nervous system, but also through the induction of autophagy offer protection against degenerative disease that can lead to dementia, a fine balance in the activity of FoxOs may be required to target cognitive loss in individuals. Future work should yield exciting new prospects for FoxO proteins as new targets to treat the onset and progression of cognitive loss and dementia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据