4.2 Article

Graphitization Behavior of Single Crystal Diamond for the Application in Nano-Metric Cutting

期刊

CURRENT NANOSCIENCE
卷 14, 期 5, 页码 377-383

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1573413714666180517080721

关键词

Graphitization; sixfold ring; crystallographic orientation; molecular dynamics; nano-metric cutting; crystal diamond

资金

  1. National Natural Science Foundation of China [51575138, 51775146]
  2. State Key Program of National Natural Science Foundation of China [51535003]

向作者/读者索取更多资源

Background: Graphitization behavior of diamond has received an increasing interest in nanoscale machining of some hard and brittle materials. Diamond has always been an important and excellent tool material in cutting area. However, the graphitization of the diamond tool is inevitable when it was used in special conditions. It is indicated that the graphitization of diamond crystal has great influence on the wear resistance of diamond cutting tool. The graphitization behavior needs to be investigated extensively in nanoscale with an atomic view. Molecular dynamics simulation provides a useful tool for understanding of the graphitization mechanism of diamond. The investigation on graphitization behavior of single crystal diamond can also provide a useful reference for the application of diamond cutting tool. Materials and Methods: In this paper, a molecular dynamics (MD) diamond crystal model is built to examine the graphitization behavior of diamond under various conditions. The sixfold ring method was employed to identify the structural characteristics of graphite and diamond. The effects of temperature and crystal orientation on the graphitization of diamond have been revealed. Considering the effect of temperature, the anisotropy of diamond graphitization against various crystal planes is presented and discussed carefully. The nano-metric cutting model of diamond tool evaluated by the sixfold ring method also proves the graphitization mechanisms in atomic view. Results: Results indicate that the sixfold ring method is a reliable method to evaluate the graphitization behavior of diamond crystal. There exists a critical temperature of the graphitization of diamond. The results also show that {111} plane is more easy to get graphitization as compared with other crystal planes. However, {100} plane of diamond model presents the highest antigraphitization property. Conclusion: The obtained results have provided the in-depth understanding on the wear of diamond tool in nano-metric machining and underpin the development of diamond cutting tool.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据