4.8 Article

ER-PM Contacts Restrict Exocytic Sites for Polarized Morphogenesis

期刊

CURRENT BIOLOGY
卷 28, 期 1, 页码 146-+

出版社

CELL PRESS
DOI: 10.1016/j.cub.2017.11.055

关键词

-

资金

  1. Temasek Trust

向作者/读者索取更多资源

Spatial control of exocytosis underlies polarized cell morphogenesis. In rod-shaped fission yeast, exocytic vesicles are conveyed along the actin cytoskeleton by myosin V motors toward growing cell ends [1, 2], the major sites for exocytosis. However, actomyosin-based vesicle delivery is dispensable for polarized secretion and cylindrical cell shape of fission yeast [3]. Thus, additional mechanisms should function in the spatial confinement of exocytosis. Here we report a novel role of endoplasmic reticulum (ER)-plasma membrane (PM) contacts in restricting exocytic sites for polarized fission yeast morphogenesis. We show that fission yeast cells deficient in both ER-PM contacts and actomyosin-based secretory vesicle transport display aberrant globular cell shape due to delocalized exocytosis. By artificially manipulating the strength and extent of ER-PM contacts in wild-type and mutant cells that exhibit induced ectopic exocytosis, we demonstrate that exocytosis and ER-PM contact formation are spatially incompatible. Furthermore, extensive ER-PM junctions at the non-growing lateral cell cortex prevent the PM from exocytic vesicle tethering and hence attenuate growth potential at cell sides. We thus propose that ER-PM contacts function as a new morphogenetic module by limiting exocytosis to growing cell tips in fission yeast. A similar mechanism could apply to other cell types with prominent ER-PM contacts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据