4.7 Article

Effect of Temperature Cycling on Ostwald Ripening

期刊

CRYSTAL GROWTH & DESIGN
卷 18, 期 9, 页码 4952-4962

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.8b00267

关键词

-

向作者/读者索取更多资源

We study the effect of temperature cycling on the rate of Ostwald ripening (or coarsening) of spherical particles dispersed in a binary solution. A widespread view, which states a temperature cycle generally enhances the rate of Ostwald ripening by first dissolving the smallest particles (heating) and then regrowing the dissolved amount of material on the remaining particles (cooling), is shown to be inadequate as it does not include transient effects. On the basis of a simulation method that assumes mass transfer as the limiting growth mechanism, we show that each temperature cycle is followed by a significant relaxation of the particle-size distribution, during which the number of particles remains constant, and the average particle size decreases. The relaxation is shown to be crucial to obtain a linear scaling of the average particle radius cubed with the number of cycles applied (or time), which is the behavior generally observed for the evolution of ice crystals in cycling experiments on frozen aqueous solutions or frozen foods. We show the experimentally observed increase in the proportionality constant (or coarsening rate) as compared to isothermal ripening, or the increase of the coarsening rate with increasing cycle frequency, can be reproduced convincingly only if some (transient) ripening is allowed to take place at the elevated temperature of each cycle. Our results thus suggest the effect of temperature cycling on Ostwald ripening is governed by a dissolution-ripening-regrowth-relaxation mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据