4.7 Article

Durability of recycled aggregate concrete under coupling mechanical loading and freeze-thaw cycle in salt-solution

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 163, 期 -, 页码 840-849

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2017.12.194

关键词

Recycled aggregate concrete (RAC); Interfacial transition zone (ITZ); Freeze-thaw; Durability; Salt-solution; Cyclic loading

资金

  1. National Natural Science Foundation of China [51668045, 51408210]
  2. Science and Technology Committee of Jiangxi Province, China [20151BAB206057, 20161BBG70056]
  3. Australian Research Council (ARC), Australia [DE150101751, IH150100006]

向作者/读者索取更多资源

In this study, a novel coupling testing protocol with separated repetitive loading and freezing-thaw cycles in salt-solution is designed to simulate coupling mechanical loading and complex environmental effects on durability and deterioration of recycled aggregate concrete (RAC). The Micromechanical properties and porosity of RAC were also characterized by scanning electron microscopy (SEM) and microhardness. The results show that the number and width of cracks of RAC and NAC under freeze-thaw cycles obviously increased with the increase of alternating times of repetitive load and the compressive stress level. The compressive strength losses for both RAC and NAC increase with the increase of compressive stress level and alternative times of repetitive load. However, the compressive strength of natural aggregate concrete (NAC) became lower than that of RAC after freeze-thaw cycles. It was found that the freeze thaw resistance of RAC seems even better than that of NAC under the same freeze-thaw attacks and cyclic mechanical loading. It indicates that after freeze-thaw cycles in salt-solution, the durability of RAC is better than that of NAC. On the other hand, the microhardness and SEM characterization results indicate that the interface transition zone (ITZ) was a weak part in both RAC and NAC, and the ITZ in NAC obviously deteriorated faster than that of RAC. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据