4.7 Article

Changes in dietary fiber fractions and gut microbial fermentation properties of wheat bran after extrusion and bread making

期刊

FOOD RESEARCH INTERNATIONAL
卷 74, 期 -, 页码 217-223

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.foodres.2015.05.005

关键词

Butyrate; Short chain fatty acids; Screw speed; Moisture; Arabinoxylans; Non-starch polysaccharides

向作者/读者索取更多资源

The dietary fiber in wheat bran, principally non-starch polysaccharides (NSP), is mostly water-unextractable and is poorly utilized by human gut microbiota. The purpose of this study was to determine the change in water-extractability of NSP in wheat bran upon extrusion and then to determine if extrusion impacts the availability of NSP for fermentation by the fecal microbiota during in vitro fecal fermentation. A secondary objective was to incorporate extruded bran into a product formulation to determine if changes in WE-NSP and NSP fermentation were maintained in a finished product. Bran was extruded using combinations of high or low moisture (15% and 30% wb) and high or low screw speed (120 and 250 rpm). All extrusion conditions resulted in increases in WE-NSP and fecal microbiota short chain fatty acid (SCFA) production upon fermentation compared with unextruded bran. Low screw speed and low moisture resulted in the greatest increase in WE-NSP (3-fold) as well as the highest production of SCFA during fermentation (1.4-fold) compared with unextruded bran. Whole wheat breads containing extruded bran did not show increases in either WE-NSP or SCFA production compared with the control. In conclusion, extrusion of wheat bran increased WE-NSF, which enabled greater fermentability by human fecal microbiota. However, once extruded bran was used in a whole wheat bread formulation the changes in fermentation outcomes were no longer evident. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据