4.7 Article

Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression

期刊

COMPUTERS & STRUCTURES
卷 194, 期 -, 页码 86-96

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compstruc.2017.09.002

关键词

Support vector regression; Sparse polynomial chaos expansion; Global sensitivity analysis; Adaptive kernel function

资金

  1. National Natural Science Foundation of China [NSFC 51475370, NSFC 51775439]

向作者/读者索取更多资源

In the context of uncertainty analysis, Polynomial chaos expansion (PCE) has been proven to be a powerful tool for developing meta-models in a wide range of applications, especially for sensitivity analysis. But the computational cost of classic PCE grows exponentially with the size of the input variables. An efficient approach to address this problem is to build a sparse PCE. In this paper, a full PCE meta-model is first developed based on support vector regression (SVR) technique using an orthogonal polynomials kernel function. Then an adaptive algorithm is proposed to select the significant basis functions from the kernel function. The selection criterion is based on the variance contribution of each term to the model output. In the adaptive algorithm, an elimination procedure is used to delete the nonsignificant bases, and a selection procedure is used to select the important bases. Due to the structural risk minimization principle employing by SVR model, the proposed method provides better generalization ability compared to the common least square regression algorithm. The proposed method is examined by several examples and the global sensitivity analysis is performed. The results show that the proposed method establishes accurate meta-model for global sensitivity analysis of complex models. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据