4.5 Article

Performance optimizations for scalable CFD applications on hybrid CPU plus MIC heterogeneous computing system with millions of cores

期刊

COMPUTERS & FLUIDS
卷 173, 期 -, 页码 226-236

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2018.03.005

关键词

Computational fluid dynamics; Parallel computing; Tianhe-2 supercomputer; CPU plus MIC heterogeneous computing

资金

  1. National Natural Science Foundation of China (NSFC) [61379056]

向作者/读者索取更多资源

For computational fluid dynamics (CFD) applications with a large number of grid points/cells, parallel computing is a common efficient strategy to reduce the computational time. How to achieve the best performance in the modern supercomputer system, especially with heterogeneous computing resources such as hybrid CPU+GPU, or a CPU + Intel Xeon Phi (MIC) co-processors, is still a great challenge.An in-house parallel CFD code capable of simulating three dimensional structured grid applications is developed and tested in this study. Several methods of parallelization, performance optimization and code tuning both in the CPU-only homogeneous system and in the heterogeneous system are proposed based on identifying potential parallelism of applications, balancing the work load among all kinds of computing devices, tuning the multi-thread code toward better performance in intra-machine node with hundreds of CPU/MIC cores, and optimizing the communication among inter-nodes, inter-cores, and between CPUs and MICs.Some benchmark cases from model and/or industrial CFD applications are tested on the Tianhe-1A and Tianhe-2 supercomputer to evaluate the performance. Among these CFD cases, the maximum number of grid cells reached 780 billion. The tuned solver successfully scales up to half of the entire Tianhe-2 supercomputer system with over 1.376 million of heterogeneous cores. The test results and performance analysis are discussed in detail. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据