4.5 Article

A two-way coupling scheme to model the effects of particle rotation on the rheological properties of a semidilute suspension

期刊

COMPUTERS & FLUIDS
卷 173, 期 -, 页码 6-16

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2018.04.038

关键词

Effective viscosity; Spatial variation; Rheology; Thixotropy; Einstein's viscosity formula; Two-way coupling

资金

  1. Takahashi Industrial and Economic Research Foundation [06-003-151]

向作者/读者索取更多资源

According to Einstein's viscosity formula, the effective viscosity of a suspension is related to the volume fraction phi of suspended particles. Higher-order terms, which include contributions from hydrodynamic interactions, become more important when the concentration of the suspension reaches around 25%. The coefficient beta of the term quadratic in phi, however, has not been incontrovertibly validated. In order to investigate the effects on the macroscopic rheology of a suspension due to the rotational motions of the microscopic suspended particles-which are usually neglected in analytical and numerical studies-we have performed simulations of a pressure-driven flow using a two-way coupling method (defined in text). We used the regularized lattice Boltzmann equation for the fluid part of the calculation, and we employed Newton's second law of motion and the equation of angular motion for the translational and rotational motions of the rigid particles. As a result, we found that the particles rotate to achieve kinetic balance with the surrounding hydrodynamic forces, which results in a decrease in fluid resistance. It is therefore important to take into account the particles' rotational motions and the accompanying changes in the flow field in order to evaluate the effective viscosity of a suspension. The spatial variation of the relative viscosity determined from the wall shear stress becomes more significant with increasing area fraction. We found that the value of the coefficient beta may increase due to hydrodynamic resistance against the rotational motions of the particles. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据