4.7 Article

Calculation of two-dimension radial electric field in boundary plasmas by using BOUT plus

期刊

COMPUTER PHYSICS COMMUNICATIONS
卷 228, 期 -, 页码 69-82

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cpc.2018.03.003

关键词

Radial electric field; Tokamak boundary plasma transport; BOUT plus

资金

  1. CSC [201606060097]
  2. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  3. U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FG02-97ER54392]
  4. China National Natural Science Foundation of China [11575039, 11505236, 11575055, LLNL-JRNL-737785]

向作者/读者索取更多资源

The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据