4.7 Article

Uncertainty quantification in multiscale simulation of woven fiber composites

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.04.024

关键词

Uncertainty quantification and propagation; Multiscale simulations; Random fields; Spatial variations; Woven composites

资金

  1. Ford Motor Company from US Department of Energy [DE-EE0006867]

向作者/读者索取更多资源

Woven fiber composites have been increasingly employed as light-weight materials in aerospace, construction, and transportation industries due to their superior properties. These materials possess a hierarchical structure that necessitates the use of multiscale simulations in their modeling. To account for the inherent uncertainty in materials, such simulations must be integrated with statistical uncertainty quantification (UQ) and propagation (UP) methods. However, limited advancement has been made in this regard due to the significant computational costs and complexities in modeling spatially correlated structural variations coupled at different scales. In this work, a non-intrusive approach is proposed for multiscale UQ and UP to address these limitations. We introduce the top-down sampling method that allows to model non-stationary and continuous (but not differentiable) spatial variations of uncertainty sources by creating nested random fields (RFs) where the hyperparameters of an ensemble of RFs is characterized by yet another RF. We employ multi-response Gaussian RFs in top-down sampling and leverage statistical techniques (such as metamodeling and dimensionality reduction) to address the considerable computational costs of multiscale simulations. We apply our approach to quantify the uncertainty in a cured woven composite due to spatial variations of yarn angle, fiber volume fraction, and fiber misalignment angle. Our results indicate that, even in linear analysis, the effect of uncertainty sources on the material's response could be significant. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据