4.7 Article

A Galerkin isogeometric method for Karhunen-Loeve approximation of random fields

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.04.026

关键词

B-splines; NURBS; Fredholm integral eigenvalue problem; Hilbert-Schmidt operator; Uncertainty quantification

资金

  1. U.S. National Science Foundation [CMMI-1607398]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [1607398] Funding Source: National Science Foundation

向作者/读者索取更多资源

This paper marks the debut of a Galerkin isogeometric method for solving a Fredholm integral eigenvalue problem, enabling random field discretization by means of the Karhunen-Loeve expansion. The method involves a Galerkin projection onto a finite-dimensional subspace of a Hilbert space, basis splines (B-splines) and non-uniform rational B-splines (NURBS) spanning the subspace, and standard methods of eigensolutions. Compared with the existing Galerkin methods, such as the finite-element and mesh-free methods, the NURBS-based isogeometric method upholds exact geometrical representation of the physical or computational domain and exploits regularity of basis functions delivering globally smooth eigensolutions. Therefore, the introduction of the isogeometric method for random field discretization is not only new; it also offers a few computational advantages over existing methods. In the big picture, the use of NURBS for random field discretization enriches the isogeometric paradigm. As a result, an uncertainty quantification pipeline of the future can be envisioned where geometric modeling, stress analysis, and stochastic simulation are all integrated using the same building blocks of NURBS. Three numerical examples, including a three-dimensional random field discretization problem, illustrate the accuracy and convergence properties of the isogeometric method for obtaining eigensolutions. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据