4.7 Article

A non-ordinary state-based peridynamics framework for anisotropic materials

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.05.007

关键词

Peridynamics; Non-ordinary state-based; Anisotropic materials; Crack propagation

资金

  1. Faculty of Science, Durham University

向作者/读者索取更多资源

Peridynamics (PD) represents a new approach for modelling fracture mechanics, where a continuum domain is modelled through particles connected via physical interactions. This formulation allows us to model crack initiation, propagation, branching and coalescence without special assumptions. Up to date, anisotropic materials were modelled in the PD framework as different isotropic materials (for instance, fibre and matrix of a composite laminate), where the stiffness of the bond depends on its orientation. In this work we propose a non-ordinary state-based formulation to model general anisotropic materials. The material properties for each particle are defined using the material constitutive matrix, rather than being defined through the bond stiffness between adjacent particles. We propose a damage criterion for composite materials to model the crack propagation behaviour for anisotropic materials. We validate the model using benchmark problems obtained with established numerical methods or experimental results. The proposed approach enables the use of general classes of material models including rocks, concrete and biomaterials. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据