4.7 Article

Thermal simulation in multiphase incompressible flows using coupled meshfree and particle level set methods

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.03.021

关键词

Meshfree methods; Multiphase flows; Heat transfer; Moving interfaces; Particle level set

资金

  1. Swiss National Science Foundation [200021-149436]
  2. Swiss National Science Foundation (SNF) [200021_149436] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

A particle-based numerical solver is presented, applicable to the simulation of heat transfer in multiphase immiscible flows including surface tension. In the context of meshfree methods, the Laplacian operator is recognized as the most numerically challenging ingredient of the heat equation. The well-known difficulty of approximating higher-order spatial derivatives with meshfree methods is herein addressed by adopting two advanced schemes in order to ensure second-order accuracy. In addition, a Lagrangian particle level set method with second-order reinitialization is introduced, for the first time in thermal simulations, to capture the location of the interface, i.e., moving and/or deformable boundaries of the continuum at each time-step. This leads to a more conservative solution, alleviating the mass loss during the simulation. Furthermore, a narrow band of the exterior geometric particles is exploited to form physical ghost particles to enforce the required boundary conditions. This novel approach ensures solver performance without the necessity of defining extra dummy particles for treating boundary conditions in meshfree simulations. Three benchmark problems are considered for evaluating the performance of the proposed solver against a reference analysis performed in COMSOL Multiphysics (R). (c) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据