4.7 Article

Analysis of PCG signals using quality assessment and homomorphic filters for localization and classification of heart sounds

期刊

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
卷 164, 期 -, 页码 143-157

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2018.07.006

关键词

Cardiovascular diseases; Classification; Feature extraction; Localization; Pascal classifying heart sound challenge; PCG; Quality assessment; Segmentation; SVM

向作者/读者索取更多资源

Background and Objective: Accurate localization of heart beats in phonocardiogram (PCG) signal is very crucial for correct segmentation and classification of heart sounds into S1 and S2. This task becomes challenging due to inclusion of noise in acquisition process owing to number of different factors. In this paper we propose a system for heart sound localization and classification into S1 and S2. The proposed system introduces the concept of quality assessment before localization, feature extraction and classification of heart sounds. Methods: The signal quality is assessed by predefined criteria based upon number of peaks and zero crossing of PCG signal. Once quality assessment is performed, then heart beats within PCG signal are localized, which is done by envelope extraction using homomorphic envelogram and finding prominent peaks. In order to classify localized peaks into S1 and S2, temporal and time-frequency based statistical features have been used. Support Vector Machine using radial basis function kernel is used for classification of heart beats into S1 and S2 based upon extracted features. The performance of the proposed system is evaluated using Accuracy, Sensitivity, Specificity, F-measure and Total Error. The dataset provided by PASCAL classifying heart sound challenge is used for testing. Results: Performance of system is significantly improved by quality assessment. Results shows that proposed Localization algorithm achieves accuracy up to 97% and generates smallest total average error among top 3 challenge participants. The classification algorithm achieves accuracy up to 91%. Conclusion: The system provides firm foundation for the detection of normal and abnormal heart sounds for cardiovascular disease detection. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据