3.8 Proceedings Paper

Towards a Generic Simulation Tool of Retina Models

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/978-3-319-18914-7_6

关键词

Retina simulator; Contrast adaptation; Color opponency; Neural network; Spikes

向作者/读者索取更多资源

The retina is one of the most extensively studied neural circuits in the Visual System. Numerous models have been proposed to predict its neural behavior on the response to artificial and natural visual patterns. These models can be considered an important tool for understanding the underlying biophysical and anatomical mechanisms. This paper describes a general-purpose simulation environment that fits to different retina models and provides a set of elementary simulation modules at multiple abstraction levels. The platform can simulate many of the biological mechanisms found in retinal cells, such as signal gathering though chemical synapses and gap junctions, variations in the receptive field size with eccentricity, membrane integration by linear and single-compartment models and short-term synaptic plasticity. A built-in interface with neural network simulators reproduces the spiking output of some specific cells, such as ganglion cells, and allows integration of the platform with models of higher visual areas. We used this software to implement whole retina models, from photoreceptors up to ganglion cells, that reproduce contrast adaptation and color opponency mechanisms in the retina. These models were fitted to published electro-physiological data to show the potential of this tool to generalize and adapt itself to a wide range of retina models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据