4.5 Article

Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 151, 期 -, 页码 181-188

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2018.05.004

关键词

Nanolayered composites; Graphene; Mechanical characteristics; Molecular dynamics

向作者/读者索取更多资源

Metal-graphene nanolayered composites (MGNLCs), composed of alternating layers of metal (copper here) and graphene layers, are new emerging engineering materials with outstandingly enhanced mechanical properties thanks to the high intrinsic in-plane strength and modulus of one-atom-thick layers of graphene. In this paper, mechanical behavior and elastic-plastic deformation mechanisms of MGNLCs subjected to uniaxial tensile loading were investigated based on molecular dynamics (MD) simulations. Stress-strain curves of the composite samples and their elastic properties were obtained and compared with their pure metal counterparts. In addition, influence of thickness of the metal layers on the composite performance was determined which seems tough or even impossible to be dealt with by the experimental techniques. Graphene inclusion outstandingly increased strength and failure strain of the composites and remarkably improved their stiffness and toughness. Graphene layers could provide effective barriers against shearing flows and dislocation propagation of the metal layers and made the applied strain energy spread out more evenly inside the material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据