4.5 Article

Investigation on tensile properties of nanocrystalline titanium with ultra-small grain size

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 142, 期 -, 页码 135-144

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2017.10.017

关键词

Molecular dynamics simulation; Nanocrystalline titanium; Size effect; Tensile deformation mechanism

资金

  1. National Natural Science Foundation of China [51475223, 51675260]
  2. Graduate Student Scientific Innovative Project of Jiangsu Province [KYLX16_0595]

向作者/读者索取更多资源

Molecular dynamics was used to simulate tensile behavior of nanocrystalline titanium with ultra-small grain size ranging from 2.8 nm to 10.2 nm at the strain rate ranging from 10(8) s(-1) to 10(10) s(-1). Three dimensional samples with random oriented grains containing no textures were developed by Voronoi tessellation. For all the samples, the yielding is solely controlled by GB mediated process. The inverse Hall-Petch relation between grain size and flow stress was found. The strain rate sensitivity shows increase with the decrease of grain size due to the enhancement of grain boundary (GB) mediated process. Meanwhile, it increases with the applied strain rate due to the local disorder around GBs. Remakeable grain coarsening observed in the 2.8 nm sample causes the slight increase of flow stress. Both GB mediated process and partial dislocation slips play an important role in the plastic deformation of nanocrystalline Ti. With the increase of grain size, rare twins initiated from GBs can be observed. From the size dependent dislocation density analysis, it is concluded that with the increase of grain size, dislocation related deformation contributes more to the plastic strain. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据