4.5 Article

Dynamic Monte Carlo simulations of effects of nanoparticle on polymer crystallization in polymer solutions

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 147, 期 -, 页码 217-226

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2018.02.009

关键词

Monte Carlo simulations; Polymer crystallization; Nanofiller

资金

  1. National Natural Science Foundation of China [21404050]
  2. Graduate Innovation Project of Jiangsu Province [SJCX17_0567]
  3. Research Foundation of Jiangsu University [14JDG059]
  4. Jiangsu Planned Projects for Postdoctoral Research Funds [1402019A]
  5. Postdoctoral Science Foundation of China [2015M580394]

向作者/读者索取更多资源

The presence of different nanoparticles can result in different polymer crystallization behaviors. Dynamic Monte Carlo simulations were used to study the effects of filler dimension and size on polymer crystallization. One-dimensional nanoparticle has the strongest ability to induce polymer crystallization, and can induce the formation of crystals with uniform orientation. The system filled with two-dimensional nanoparticle has the stronger crystallizability than that filled with zero-dimensional nanoparticle. Two factors, i.e., surface area and segmental orientation in interfacial regions, contribute to the different crystallizability. Further simulations revealed that more surface area can result in more interfacial oriented segments. In addition, it was found that the decrease of the length of one-dimensional filler causes the decrease of polymer crystallization rate and number of crystal lamellae. The decrease of the length of one-dimensional filler also leads to the drop of the degree of segmental orientation in interfacial regions, and thus crystal orientation was disrupted. These findings indicate that polymer crystallization behaviors could be effectively controlled by the addition of different nanofillers. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据