4.6 Article

Systematic analysis of how phytochrome B dimerization determines its specificity

期刊

NATURE PLANTS
卷 1, 期 7, 页码 1-8

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPLANTS.2015.90

关键词

-

资金

  1. LGFG/International Graduate Academy, University of Freiburg
  2. DFG grant [SCHA 303/16-1, KI 1077/2]
  3. Human Frontier Science Program (HFSP Research Grant) [RGP0025/2013]

向作者/读者索取更多资源

Phytochromes are red/far-red-light detecting photoreceptors that regulate plant growth and development. They photo-interconvert between an inactive Pr (red-light absorbing) and a physiologically active Pfr (far-red-light absorbing) form, acting as light-controlled molecular switches. Although the two major plant phytochromes A (phyA) and B (phyB) share similar absorption properties, they exhibit dramatic differences in their action spectra. Since both phytochromes antagonistically regulate seedling development under vegetative shade, it is essential for plants to clearly distinguish between phyA and phyB action. This discrimination is not comprehensible solely by the molecular properties of the phytochromes, but is evidently due to the dynamics of the phytochrome system. Using an integrated experimental and mathematical modelling approach we show that phytochrome dimerization is an essential element for phyB function. Our findings reveal that light-independent Pfr to Pr relaxation (dark reversion) and association/dissociation to nuclear bodies (NBs) severely depend on the conformational state of the phyB dimer. We conclude that only Pfr-Pfr homodimers of phyB can be responsible for triggering physiological responses, leading to a suppression of phyB function in the far-red range of the light spectrum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据