4.2 Article

When rare species are not important: linking plot-based vegetation classifications and landscape-scale mapping in Australian savanna vegetation

期刊

COMMUNITY ECOLOGY
卷 19, 期 1, 页码 67-76

出版社

SPRINGER HEIDELBERG
DOI: 10.1556/168.2018.19.1.7

关键词

Characteristic species; Landscape classification; Plant communities; Subsets; Vegetation structure

类别

资金

  1. Queensland Herbarium, Department of Environment and Science, Queensland Government, Australia

向作者/读者索取更多资源

Plant communities in extensive landscapes are often mapped remotely using detectable patterns based on vegetation structure and canopy species with a high relative cover. A plot-based classification which includes species with low relative canopy cover and ignores vegetation structure, may result in plant communities not easily reconcilable with the landscape patterns represented in mapping. In our study, we investigate the effects on classification outcomes if we (1) remove rare species based on canopy cover, and (2) incorporate vegetation structure by weighting species' cover by different measures of vegetation height. Using a dataset of 101 plots of savanna vegetation in north-eastern Australia we investigated first, the effect of removing rare species using four cover thresholds (1, 5, 8 and 10% contribution to total cover) and second, weighting species by four height measures including actual height as well as continuous and categorical transformations. Using agglomerative hierarchical clustering we produced a classification for each dataset and compared them for differences in: patterns of plot similarity, clustering, species richness and evenness, and characteristic species. We estimated the ability of each classification to predict species cover using generalised linear models. We found removing rare species at any cover threshold produced characteristic species appearing to correspond to landscape scale changes and better predicted species cover in grasslands and shrublands. However, in woodlands it made no difference. Using actual height of vegetation layer maintained vegetation structure, emphasised canopy and then sub-canopy species in clustering, and predicted species cover best of the height-measures tested. Thus, removing rare species and weighting species by height are useful techniques for identifying plant communities from plot-based classifications which are conceptually consistent with those in landscape scale mapping. This increases the confidence of end-users in both the classifications and the maps, thus enhancing their use in land management decisions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据