4.7 Article

Fast approximations of exponential and logarithm functions combined with efficient storage/retrieval for combustion kinetics calculations

期刊

COMBUSTION AND FLAME
卷 194, 期 -, 页码 37-51

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2018.04.013

关键词

Exponential; Logarithm; Floating-point algebra; Table interpolation; chemical kinetics

资金

  1. Sandia National Laboratories by the U.S. Department of Energy, Office of Vehicle Technologies

向作者/读者索取更多资源

We developed two approaches to speed up combustion chemistry simulations by reducing the amount of time spent computing exponentials, logarithms, and complex temperature-dependent kinetics functions that heavily rely on them. The evaluation of these functions is very accurate in 64-bit arithmetic, but also slow. Since these functions span several orders of magnitude in temperature space, some of this accuracy can be traded with greater solution speed, provided that the governing ordinary differential equation (ODE) solver still grants user-defined solution convergence properties. The first approach tackled the exp() and log() functions, and replaced them with fast approximations which perform bit and integer operations on the exponential-based IEEE-754 floating point number machine representation. The second approach addresses complex temperature-dependent kinetics functions via storage/retrieval. We developed a function-independent piecewise polynomial approximation method with the following features: it minimizes table storage requirements, it is not subject to ill-conditioning over the whole variable range, it is of arbitrarily high order n > 0, and is fully vectorized. Formulations for both approaches are presented; and their performance assessed against zero-dimensional reactor simulations of hydrocarbon fuel ignition delay, with reaction mechanisms ranging from 10 to 10(4) species. The results show that, when used concurrently, both methods allow global speed-ups of about one order of magnitude even with an already highly-optimized sparse analytical Jacobian solver. The methods also demonstrate that global error is within the integrator's requested accuracy, and that the solver's performance is slightly positively affected, i.e., a slight reduction in the number of timesteps per integration is seen. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据