4.7 Article

2-methylfuran pyrolysis: Gas-phase modelling and soot formation

期刊

COMBUSTION AND FLAME
卷 188, 期 -, 页码 376-387

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2017.10.017

关键词

2-methylfuran; Pyrolysis; Soot; Gas-phase; Modelling

资金

  1. Aragon Government
  2. European Social Fund (GPT group)
  3. MINECO
  4. FEDER [CTQ2015-65226]
  5. MINECO the pre-doctoral grant [BES-2013-063049]

向作者/读者索取更多资源

Since the recent discoveries in the high efficiency production methods of 2,5-dimethylfuran (2,5-DMF) and 2-methylfuran (2-MF), and due to their good physicochemical properties, these alkylated furan derivatives have been highly considered as fuels or additives in gasoline and diesel engines. However, the cyclic structures of 2,5-DMF and 2-MF may make them effective soot precursors. We have recently studied the capacity of 2,5-DMF to form soot under different pyrolysis experimental conditions, in a flow reactor, and we now focus on the study of the capacity of 2-MF to form soot under the same conditions. In this way, a systematic investigation of the temperature and fuel concentration effects on the soot formed in the 2-MF pyrolysis was undertaken, in an atmospheric-pressure flow reactor, in the temperature range of 975-1475 K, and with 9000 and 18,000 ppm of 2-MF (inlet total carbon of 45,000 and 90,000 ppm, respectively). The increase in the soot yield is favoured by the rise in both the temperature and the inlet 2-MF concentration, while the gas yield decreases as the temperature increases without a noticeable influence of the inlet 2-MF concentration. A gas-phase chemical kinetic model was proposed to describe both the pyrolysis of 2-MF and 2,5-DMF. It was validated against the gas-phase data obtained in this work, as well as with a series of experimental data from literature including shock tube and flow reactors. Results show that 2-MF has a high capacity to form soot. and C4 species play a major role in the formation of intermediates that yield polycyclic aromatic hydrocarbons (PAH), well known as soot precursors. However, the soot yield in the 2-MF pyrolysis was found to be lower than that in the 2,5-DMF pyrolysis, mainly because, according to modelling results, during the 2,5-DMF pyrolysis the cyclopentadienyl radicals are highly formed, whose recombination yields directly naphthalene without any other intermediate. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据