4.7 Article

Fabrication of tannic acid/poly(N-vinylpyrrolidone) layer-by-layer coating on Mg-based metallic glass for nerve tissue regeneration application

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 170, 期 -, 页码 617-626

出版社

ELSEVIER
DOI: 10.1016/j.colsurfb.2018.06.060

关键词

Nerve regeneration; Mg-based metallic glass; Layer-by-layer coating; Biocorrosion; Biocompatibility

资金

  1. NBIC research center of University of Tehran, Iran [NBICD0005]

向作者/读者索取更多资源

For improving recovery rates and functional outcomes in large nerve defects, a nerve guide conduit, in addition to topographic, physical and chemical cues should provide contact guidance and adequate mechanical support for cell migration and axon outgrowth. Among biomaterials, magnesium (Mg) metal has potential to support nerve regeneration owing to its electrical conductivity, biodegradation and ability to be formed into wires, filaments and ribbons. However, rapid degradation of magnesium can pose a challenge. Mg-based metallic glasses with desirable features including favorable biocompatibility, proper biodegradation and good mechanical properties are a good alternative to crystalline Mg alloys, This study investigates the biocorrosion and biocompatibility of Mg-Zn-Ca metallic glass ribbon with Mg70Zn26Ca4 composition. For controlling biocorrosion, layer-by-layer coating of tannic acid/ poly(N-vinylpyrrolidone) was applied on Mg70Zn26Ca4 ribbon and characterized by SEM and FTIR. Immersion and potentiodynamic polarization test results indicated that coating significantly improved the corrosion resistance of Mg70Zn26Ca4. Schwann cells were selected for the cytocompatibility evaluation of samples due to their key role in peripheral nerve regeneration and ability to repair spinal cord injuries. The MTT assay and cell morphology results showed good biocompatibility for Mg70Zn26Ca4 metallic glass as a promising candidate for nerve regeneration and implantable nervous prosthetic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据