4.7 Article

Synthesis and characterization of biogenic metal nanoparticles and its cytotoxicity and anti-neoplasticity through the induction of oxidative stress, mitochondrial dysfunction and apoptosis

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 161, 期 -, 页码 111-120

出版社

ELSEVIER
DOI: 10.1016/j.colsurfb.2017.10.040

关键词

AgNPCGs; Ehrlich's ascites carcinoma (EAC); Anti-neoplasticity; Apoptosis; Oxidative stress

向作者/读者索取更多资源

In the present study, we demonstrate a simple, cost-effective and eco-friendly method for biogenic synthesis of silver nanoparticles (AgNPCGs) using ethanolic extract of Calotropis gigantea latex. Attempts were made to characterize these biogenic silver nanoparticles AgNPCGs and also to test its cytotoxic, anti-neoplastic and apoptotic potential through the induction of oxidative stress, mitochondrial dysfunction. AgNPCGs were characterized by UV-vis spectroscopy, dynamic light scattering (DLS) and surface zeta potential measurement, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence spectrometry (EDX). UV visible spectroscopy showed an intense surface plasmon resonance band at 431 nm which clearly reflected the formation of silver nanoparticles. FTIR study revealed that latex extract acted as reducing and stabilizing agent for the synthesis of AgNPCGs. Energy dispersive X-ray spectroscopy confirmed the presence of silver as a major component of synthesized AgNPCGs. SEM and TEM studies showed that the synthesized AgNPCGs were nearly spherical in shape with an average size of 2.338 nm. The selected area electron diffraction pattern and XRD studies confirmed the crystalline nature of AgNPCGs. AgNPCGs exhibited in-vitro cytotoxic activity against Ehrlich's ascites carcinoma (EAC), Jurkat and MCF-7 cells at respective IC50 doses without producing cytotoxicity to mice and human lymphocytes. Significant chromatin condensation, DNA fragmentation, cell cycle arrest at G(2)/M phase, up-regulation of Box and caspase-3 and down-regulation of Bcl-2 were observed in AgNPCGs treated EAC cells. The results suggest that biogenic silver nanoparticles AgNPCGs could be a potential chemotherapeutic formulation for cancer therapy. (C) 2017 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据