4.6 Article

Low-temperature growth of carbon nanofiber using a vapor-facet-solid process

期刊

MATERIALS TODAY COMMUNICATIONS
卷 2, 期 -, 页码 E55-E61

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mtcomm.2014.12.003

关键词

Carbon nanofibers; CVD growth; Growth mechanism; Fe catalyst

向作者/读者索取更多资源

Most carbon nanofibers (CNFs) are grown at temperatures higher than 700 degrees C with a chemical vapor deposition (CVD) process and their growths are explained using the vapor-liquid-solid (VLS) mechanism. Herein we report the realization of low temperature growth of CNFs and the interpretation of their growth with a vapor-facet-solid (VFS) mechanism. CNFs were synthesized via a thermal CVD process at the temperature as low as 350 degrees C and characterized using elemental analysis, gas chromatography-mass spectrometry, X-ray photoelectron spectroscopy, and Raman spectroscopy. They feature unique structures of partly ordered discontinuous and hydrogen rich polymer sheets with a diameters of 0.5-1.5 nm. Based on a trimerization reaction occurring on the Fe catalyst surface, their initial growth step is the formation of six-membered rings from the source gas (i.e. C2H2). Subsequently, these rings act as structural unit and construct various larger planar molecules. Due to catalytic difference of the crystalline faces for a given Fe catalyst particle, a concentration gradient of hydrocarbon molecule introduces simultaneously. This gradient drives the diffusion of hydrocarbon molecule from the Fe(110) to the Fe(100) face, leading to the formation of disordered hydrogen-rich polymer structures. Highly graphitic CNFs can be obtained simply by annealing those polymer structures at higher temperatures. This growth mode proposed is workable whenever transition metal catalyzed nanostructures are synthesized by a thermal CVD process at low temperatures. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据