4.7 Article

Time-to-Event Bayesian Optimal Interval Design to Accelerate Phase I Trials

期刊

CLINICAL CANCER RESEARCH
卷 24, 期 20, 页码 4921-4930

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-18-0246

关键词

-

类别

资金

  1. NCI [P50CA098258]

向作者/读者索取更多资源

Late-onset toxicity is common for novel molecularly targeted agents and immunotherapy. It causes major logistic difficulty for existing adaptive phase I trial designs, which require the observance of toxicity early enough to apply dose-escalation rules for new patients. The same logistic difficulty arises when the accrual is rapid. We propose the time-to-event Bayesian optimal interval (TITE-BOIN) design to accelerate phase I trials by allowing for real-time dose assignment decisions for new patients while some enrolled patients' toxicity data are still pending. Similar to the rolling six design, the TITE-BOIN dose-escalation/deescalation rule can be tabulated before the trial begins, making it transparent and simple to implement, but is more flexible in choosing the target dose-limiting toxicity (DLT) rate and has higher accuracy to identify the MTD. Compared with the more complicated model-based time-to-event continuous reassessment method (TITE-CRM), the TITE-BOIN has comparable accuracy to identify the MTD but is simpler to implement with substantially better overdose control. As the TITE-CRM is more aggressive in dose escalation, it is less likely to underdose patients. When there are no pending data, the TITE-BOIN seamlessly reduces to the BOIN design. Numerical studies show that the TITE-BOIN design supports continuous accrual without sacrificing patient safety or the accuracy of identifying the MTD, and therefore has great potential to accelerate earlyphase drug development. (C) 2018 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据