4.7 Article

Binding of Dickkopf-3 to CXCR7 Enhances Vascular Progenitor Cell Migration and Degradable Graft Regeneration

期刊

CIRCULATION RESEARCH
卷 123, 期 4, 页码 451-466

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.118.312945

关键词

animals; mice; rats; stem cells; tissue engineering

资金

  1. British Heart Foundation [RG/14/6/31144]
  2. National Natural Science Foundation of China [81522023, 81530059, 91639113]
  3. European Union [606998]

向作者/读者索取更多资源

Rationale: Vascular progenitor cells play key roles in physiological and pathological vascular remodelinga process that is crucial for the regeneration of acellular biodegradable scaffolds engineered as vital strategies against the limited availability of healthy autologous vessels for bypass grafting. Therefore, understanding the mechanisms driving vascular progenitor cells recruitment and differentiation could help the development of new strategies to improve tissue-engineered vessel grafts and design drug-targeted therapy for vessel regeneration. Objective: In this study, we sought to investigate the role of Dkk3 (dickkopf-3), recently identified as a cytokine promotor of endothelial repair and smooth muscle cell differentiation, on vascular progenitor cells cell migration and vascular regeneration and to identify its functional receptor that remains unknown. Methods and Results: Vascular stem/progenitor cells were isolated from murine aortic adventitia and selected for the Sca-1 (stem cell antigen-1) marker. Dkk3 induced the chemotaxis of Sca-1+ cells in vitro in transwell and wound healing assays and ex vivo in the aortic ring assay. Functional studies to identify Dkk3 receptor revealed that overexpression or knockdown of chemokine receptor CXCR7 (C-X-C chemokine receptor type 7) in Sca-1+ cells resulted in alterations in cell migration. Coimmunoprecipitation experiments using Sca-1+ cell extracts treated with Dkk3 showed the physical interaction between DKK3 and CXCR7, and specific saturation binding assays identified a high-affinity Dkk3-CXCR7 binding with a dissociation constant of 14.14 nmol/L. Binding of CXCR7 by Dkk3 triggered the subsequent activation of ERK1/2 (extracellular signal-regulated kinases 1/2)-, PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)-, Rac1 (Ras-related C3 botulinum toxin substrate 1)-, and RhoA (Ras homolog gene family, member A)-signaling pathways involved in Sca-1+ cell migration. Tissue-engineered vessel grafts were fabricated with or without Dkk3 and implanted to replace the rat abdominal aorta. Dkk3-loaded tissue-engineered vessel grafts showed efficient endothelization and recruitment of vascular progenitor cells, which had acquired characteristics of mature smooth muscle cells. CXCR7 blocking using specific antibodies in this vessel graft model hampered stem/progenitor cell recruitment into the vessel wall, thus compromising vascular remodeling. Conclusions: We provide a novel and solid evidence that CXCR7 serves as Dkk3 receptor, which mediates Dkk3-induced vascular progenitor migration in vitro and in tissue-engineered vessels, hence harnessing patent grafts resembling native blood vessels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据