4.6 Article

Globally exponential multi switching-combination synchronization control of chaotic systems for secure communications

期刊

CHINESE JOURNAL OF PHYSICS
卷 56, 期 3, 页码 974-987

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cjph.2018.03.011

关键词

Multi switching combination synchronization; Global exponential stability; Lyapunov stability theory; Chaotic systems; Secure communication

向作者/读者索取更多资源

This article introduces the global exponential multi switching combination synchronization (GEMSCS) for three different chaotic systems with known parameters in the master-slave system configuration. The proposed GEMSCS scheme establishes the global exponential stability of the synchronization error at the origin with different combinations of state variables of the two master chaotic systems with the state variables of a slave chaotic system in diverse manners. Consequently, it increases the complexity level of the information signal in secure communications. To study the GEMSCS, an efficient nonlinear control algorithm is designed. The Lyapunov direct theorem is used to accomplish the global exponential stability of the synchronization error at the origin. The stability conditions are derived analytically. To show the effectiveness and advantages of the proposed GEMSCS control approach, two numerical examples are presented. The computer based simulation results are compared with the reported works in the relevant literature. This article also extends the idea of GEMSCS to the secure communication using the chaotic masking technique. Using the GEMSCS strategy, the information signal is recovered at the receiving system with good accuracy and high speed while the parameters of the transmitter and receiver systems mismatch. At the end, some future research problems related to this work are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据