4.7 Article

An Integrative Transcriptomic and Metabolomic Study of Lung Function in Children With Asthma

期刊

CHEST
卷 154, 期 2, 页码 335-348

出版社

ELSEVIER
DOI: 10.1016/j.chest.2018.05.038

关键词

asthma; integrative omics; lung function; metabolome; transcriptome

资金

  1. National Institutes of Health [HL066289, HL04370, HL117191, HL119952, K01 HL127265]
  2. National Heart Lung and Blood Institute (NHLBI) [1R01HL123915-01]

向作者/读者索取更多资源

BACKGROUND: Single omic analyses have provided some insight into the basis of lung function in children with asthma, but the underlying biologic pathways are still poorly understood. METHODS: Weighted gene coexpression network analysis (WGCNA) was used to identify modules of coregulated gene transcripts and metabolites in blood among 325 children with asthma from the Genetic Epidemiology of Asthma in Costa Rica study. The biology of modules associated with lung function as measured by FEV1, the FEV1/FVC ratio, bronchodilator response, and airway responsiveness to methacholine was explored. Significantly correlated gene-metabolite module pairs were then identified, and their constituent features were analyzed for biologic pathway enrichments. RESULTS: WGCNA clustered 25,060 gene probes and 8,185 metabolite features into eight gene modules and eight metabolite modules, where four and six, respectively, were associated with lung function (P <= .05). The gene modules were enriched for immune, mitotic, and metabolic processes and asthma-associated microRNA targets. The metabolite modules were enriched for lipid and amino acid metabolism. Integration of correlated gene-metabolite modules expanded the single omic findings, linking the FEV1/FVC ratio with ORMDL3 and dysregulated lipid metabolism. This finding was replicated in an independent population. CONCLUSIONS: The results of this hypothesis-generating study suggest a mechanistic basis for multiple asthma genes, including ORMDL3, and a role for lipid metabolism. They demonstrate that integrating multiple omic technologies may provide a more informative picture of asthmatic lung function biology than single omic analyses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据