4.8 Article

Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation

期刊

CHEMSUSCHEM
卷 11, 期 13, 页码 2138-2145

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201800532

关键词

biomass conversion; electrocatalysis; manganese; polymers; separations

资金

  1. University of Wisconsin-Madison

向作者/读者索取更多资源

2,5-Furandicarboxylic acid (FDCA) has become an increasingly desirable platform chemical to replace terephthalic acid in the production of a variety of polymeric materials, including polyethylene terephthalate. FDCA can be produced by the oxidation of 5-hydroxymethylfurfural (HMF), which can be derived from cellulosic biomass. Oxidation of HMF to FDCA is typically performed under basic conditions. Separation of FDCA is most easily accomplished by lowering the pH until FDCA is insoluble and filtering it from solution. In a large-scale process, this would lead to a high operating cost to purchase the required acid and base and to dispose of the resulting salt waste. In this study, electrochemical oxidation of HMF was carried out in acidic media by using a manganese oxide (MnOx) anode to remove the need to vary the pH to separate FDCA. The MnOx anode afforded a FDCA yield of 53.8% in a pH1 H2SO4 solution, in which FDCA precipitation occurred spontaneously from the same reaction solution without altering the pH or other aspects of the solution composition. Electrochemical oxidation in acidic media offers a new pathway to convert HMF into maleic acid, which is another desirable biomass-derived platform molecule. The performance of the MnOx anode was investigated in comparison with that of a Pt anode to identify unique electrocatalytic properties of the MnOx anode for HMF oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据