4.7 Article

Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts

期刊

CHEMOSPHERE
卷 210, 期 -, 页码 1099-1107

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2018.07.109

关键词

Advanced oxidation process; Antibiotics; Nanomaterials; Pharmaceuticals; Photocatalysis; Wastewater treatment

资金

  1. Ministry of Science and Technology (MOST), Taiwan [MOST 104-2221-E-009-020-MY3]
  2. Department of Science and Technology (DOST), Philippines

向作者/读者索取更多资源

An environment-friendly iodine and potassium co-doped g-C3N4 (IK-C3N4) photocatalyst was synthesized via the co-pyrolysis of urea and potassium iodate. Various characterization techniques were employed to evaluate the physical, thermal and chemical characteristics of the as-synthesized photo catalyst. Sulfamethoxazole (SMX) was used as a representative antibiotic pollutant. SMX removal by IK-C3N4 photocatalysts exceeded 99% (similar to 23 times higher than that of pure g-C3N4) within 45 min of visible light irradiation. The kinetics of SMX removal was analyzed with respect to solution pH, photocatalyst dosage and initial SMX concentration. Experimental data was found to fit the pseudo-first order kinetics and the Langmuir-Hinshelwood kinetics. The reuse of the photocatalyst up to 3 consecutive photo degradation cycles gave a minimal decline in SMX removal while the structure and the crystallinity of the nanomaterials remained unchanged. Overall, morphology engineering of conventional bulk graphitic carbon nitride can produce highly efficient photocatalysts for the decontamination of antibiotics in the aqueous environment. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据