4.7 Article

Feedback mechanisms between snow and atmospheric mercury: Results and observations from field campaigns on the Antarctic plateau

期刊

CHEMOSPHERE
卷 197, 期 -, 页码 306-317

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.12.180

关键词

Mercury; Antarctica; Dome C

资金

  1. Programma Nazionale per la Ricerca in Antartide (PNRA) [2013/AC3.03 PEA 2013-2015]
  2. FP7 Global Mercury Observation System (GMOS) project
  3. Labex OSUG (Investissements d'avenir) [ANR10 LABX56]
  4. French Polar Institute IPEV [1028]
  5. PNRA-MIUR

向作者/读者索取更多资源

The Antarctic Plateau snowpack is an important environment for the mercury geochemical cycle. We have extensively characterized and compared the changes in surface snow and atmospheric mercury concentrations that occur at Dome C. Three summer sampling campaigns were conducted between 2013 and 2016. The three campaigns had different meteorological conditions that significantly affected mercury deposition processes and its abundance in surface snow. In the absence of snow deposition events, the surface mercury concentration remained stable with narrow oscillations, while an increase in precipitation results in a higher mercury variability. The Hg concentrations detected confirm that snowfall can act as a mercury atmospheric scavenger. A high temporal resolution sampling experiment showed that surface concentration changes are connected with the diurnal solar radiation cycle. Mercury in surface snow is highly dynamic and it could decrease by up to 90% within 4/6 h. A negative relationship between surface snow mercury and atmospheric concentrations has been detected suggesting a mutual dynamic exchange between these two environments. Mercury concentrations were also compared with the Br concentrations in surface and deeper snow, results suggest that Br could have an active role in Hg deposition, particularly when air masses are from coastal areas. This research presents new information on the presence of Hg in surface and deeper snow layers, improving our understanding of atmospheric Hg deposition to the snow surface and the possible role of re-emission on the atmospheric Hg concentration. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据