4.6 Article

Split-and-Combine Approach Towards Branched Precision Glycomacromolecules and Their Lectin Binding Behavior

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 24, 期 7, 页码 1619-1630

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201704179

关键词

biomimetic synthesis; glycoconjugates; multivalency; precision glycomacromolecules; solid-phase synthesis

资金

  1. German Research Council (DFG) [Forschergruppe FOR2327]

向作者/读者索取更多资源

Previously, monodisperse and sequence-controlled oligo(amidoamine) scaffolds were synthesized based on the step-wise assembly of tailor-made building blocks on a solid support that allow for the multivalent presentation of sugar ligands. Here, we extend on this concept using a split-and-combine approach to gain access to a small library of linear and branched glycomacromolecules. Azide side chains were introduced in the scaffold by the use of a novel building block allowing for copper-mediated azide-alkyne cycloaddition (CuAAC) of readily available propargyl-functionalized glycans. In the first stage, after assembly of the linear scaffold on solid support, the batch was divided into two. One part of the resin-bound oligomers was end-capped and further used as backbone and the other part was functionalized with propargylated-d-mannopyranoside in the sidechain, end capped with an alkyne functionality and finally cleaved from solid support to give the branching arm. In the second stage, the linear, glycosylated and alkynylated arms were then coupled to the end capped backbone via CuAAC. In this way, branched glycomacromolecules with two and three branches, respectively, have been synthesized carrying from two to six sugar residues per molecule. Both, linear arms and branched glycomacromolecules were then subjected to a lectin binding assay using surface plasmon resonance (SPR) and model lectin Concanavalin A (Con A) showing the effect of branching as well as valency on the binding kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据