4.8 Article

Targeting Endothelial Cell Junctions with Negatively Charged Gold Nanoparticles

期刊

CHEMISTRY OF MATERIALS
卷 30, 期 11, 页码 3759-3767

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.8b00840

关键词

-

资金

  1. Ministry of Education Singapore Tier 2 Grant [MOE2013-T2-2-093]
  2. National Science Foundation China [11422215, 11672079]

向作者/读者索取更多资源

Endothelial leakiness or permeability directly determines the access of any bionanotechnology to the target tissue site. Currently, cancer nanotechnology relies on tumor-derived endothelial leakiness, which suffers from unreliability, inhomogeneity of leakiness, and uncontrollability. Nanomaterials by themselves are capable of inducing endothelial leakiness (NanoEL) without any tumor involvement by targeting the endothelial cell junctions; this NanoEL phenomenon not well understood. Here, we showed that the negatively charged Au nanoparticles (NPs) induce significantly higher NanoEL than positively charged nanoparticles. We hypothesized and showed that in both in vitro and in silico models that cell junction targeting arose for the negatively charged particles due to a succession of repulsive-sedimentary interactions between the negative particle and the negatively charged glycocalyx found on the cell membrane surface. On the contrary, NPs with positive charges are attracted stably by the negatively charged glycocalyx and remained in situ for long enough, which eventually are endocytosized into the cells as contrasted to localization toward the cell junction. There are implications to how nanoparticle charges could be tuned to induce (or avoid) endothelial leakiness by design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据