4.8 Article

Controllable Generation of Free Radicals from Multifunctional Heat-Responsive Nanoplatform for Targeted Cancer Therapy

期刊

CHEMISTRY OF MATERIALS
卷 30, 期 2, 页码 526-539

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.7b04841

关键词

-

资金

  1. National Natural Science Foundation of China [NSFC 51772059, 51472058, 51502050, 51422209, 201401019, 51572258]
  2. China Postdoctoral Science Foundation [2014M560248, 2015T80321]
  3. Natural Science Foundation of Heilongjiang Province [B201403]
  4. Outstanding Youth Foundation of Heilongjiang Province [JC2015003]
  5. Heilongjiang Postdoctoral Fund [LBH-Z14052, LBH-TZ0607]
  6. PHD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities [HEUGIP201711]
  7. Fundamental Research funds for the Central Universities

向作者/读者索取更多资源

Targeted drug delivery and controllable generation of oxygen-independent toxic free radicals in tumor hypoxia environments are of great importance in cancer therapy. Here, a thermoresponsive nanoplatform was introduced by modifying carbon-coated iron carbide (Fe5C2) nanoparticles with bovine serum albumin (BSA) to achieve better water solubility and biocompatibility. Then a type of polymerization initiator (AIPH) was effectively loaded on the surface of Fe5C2 BSA nanoparticles and sealed by a phase change material (PCM) for higher drug loading and controlled drug release stimulated by heat. Upon illumination by near-infrared light, the photothermal effect of Fe5C2 nanoparticles melts the PCM, triggering the release of encapsulated AIPH to produce free radicals, which effectively kill the hypoxia cancer cells. Additionally, the special magnetic performance enables targeted and tracked therapy under the driving of an external magnetic field. What's more, the as-prepared multifunctional theranostic nanoplatform (Fe5C2 BSA-AIPH/PCM) ingeniously combine magnetic targeting, remotely controlled drug delivery, the generation of free radicals independent of oxygen levels into a single nanoparticle for effective cancer treatment, in detail, causing cancer cells death in vitro and markedly inhibiting tumor growth in vivo. This work presents a paradigm demonstrating that enhancing the therapeutic effect based on rationally designed multifunctional nanotheranostic agent will pioneer a new way for synergistic cancer treatment and highly developing nanotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据