3.8 Proceedings Paper

Detection of Munitions Grade G-Series Nerve Agents Using Raman Excitation at 1064 nm.

向作者/读者索取更多资源

Raman spectroscopy is a powerful tool for obtaining molecular structure information of a sample. While Raman spectroscopy is a common laboratory based analytical tool, miniaturization of opto-electronic components has allowed handheld Raman analyzers to become commercially available. These handheld systems are utilized by Military and First Responder operators tasked with rapidly identifying potentially hazardous chemicals in the field. However, one limitation of many handheld Raman detection systems is strong interference caused by fluorescence of the sample or underlying surface which obscures the characteristic Raman signature of the target analyte. Munitions grade chemical warfare agents (CWAs) are produced and stored in large batches and typically have more impurities from the storage container, degradation, or unreacted precursors. In this work, Raman spectra of munitions grade CWAs were collected using a handheld Raman spectrometer with a 1064 nm excitation laser. While Raman scattering generated by a 1064 nm laser is inherently less efficient than excitation at shorter wavelengths, high quality spectra were easily obtained due to significantly reduced fluorescence of the munitions grade CWAs. The spectra of these less pure, but more operationally relevant, munitions grade CWAs were then compared to spectra of CASARM grade CWAs, as well as Raman spectra collected using the more common 785 nm excitation laser.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据